Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Transl Autoimmun ; 5: 100171, 2022.
Article in English | MEDLINE | ID: covidwho-2284092

ABSTRACT

Long COVID is a collection of symptoms as a late sequelae of SARS-CoV-2 infection. It often includes mental symptoms such as cognitive symptoms, persisting loss of smell and taste, in addition to exertional dyspnea. A role of various autoantibodies (autoAbs) has been postulated in long-COVID and is being further investigated. With the goal of identifying potentially unknown autoAbs, we screened plasma of patients with long COVID on in-house post-translationally modified protein macroarrays including citrullinated, SUMOylated and acetylated membranes. SUMO1ylated isoform DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 35 (SUMO1-DHX35) was identified as only candidate antigen. In adult patients with long COVID, IgG autoAbs against SUMO1-DHX35 of IgG class were found in seven of 71 (9.8%) plasma samples, of IgM and IgG class in one of 69 (1.4%) samples, not in 200 healthy adult controls, not in 442 healthy children, and 146 children after SARS-CoV-2 infection. All autoAb-positive seven patients were female. AutoAb titers ranged between 200 to up to 400 By point mutagenesis and expression of FLAG-tagged mutants of DHX35 in HEK293 cells, and subsequent SUMOylation of purified constructs, lysine 53 was identified as a unique, never yet identified, SUMOylation site. The autoAbs had no reactivity against the non-SUMO1ylated mutant (K53R) of DHX35. To summarize, autoAbs against SUMO1-DHX35 were identified in adult female patients with long-COVID. Further studies are needed to verify the frequency of occurrence. The function of DHX35 has not yet been determined and there is no available information in relation to disease implication. The molecular mechanism causing the SUMOylation, the potential functional consequences of this post-translational modification on DHX35, and a potential pathogenicity of the autoAbs against SUMO1-DHX35 in COVID-19 and other possible contexts remain to be elucidated.

2.
Expert Rev Vaccines ; 21(11): 1683-1689, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1997005

ABSTRACT

BACKGROUND: Patients with cancer and autoimmune diseases are at higher risk of severe COVID-19. They may not develop protective immune responses following vaccination. We investigated patients' cellular and humoral immune response after two COVID-19 vaccine doses. RESEARCH DESIGN AND METHODS: Subjects were stratified into subgroups according to therapy and grade of immunosuppression at time of vaccination. RESULTS: Antibody titers were compared to healthy controls. 32/122 (26%) did not develop detectable antibody titers. Of these, 22 (66.6%) had active therapy. Patients showed significant lower antibody titers compared to controls (median 790 vs. 3923 AU/mL, p = 0.026). Patients with active therapy had significant lower antibody titers compared to those without (median 302 vs. 3952 U/L P < 0.001). B-cell count was lower in the group without antibody titers (median 29.97 vs. 152.8; p = 0.002). 100% of patients under anti-CD20 therapy had no detectable antibody titer, followed by anti-TNF (66%), BTK inhibitors (50%), ruxolitinib (35.5%), TKI (14.2%), and lenalidomide (12.5%). Anti-CD20 therapy, ruxolitinib, BTK inhibitors, and anti-CD38 therapy presented significant lower antibody titers compared to controls. CONCLUSIONS: Patients undergoing therapy for cancer or autoimmune diseases are at higher risk of insufficient humoral immune response following COVID-19 vaccination. Furthermore, alterations in the B-cell compartment correlate with lower antibody titers.


Subject(s)
Autoimmune Diseases , COVID-19 , Neoplasms , Humans , Immunity, Humoral , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/prevention & control , Lenalidomide , Tumor Necrosis Factor Inhibitors , Antibodies, Viral , Immunosuppression Therapy , Neoplasms/therapy
3.
Intensive Care Med Exp ; 9(1): 45, 2021 Sep 03.
Article in English | MEDLINE | ID: covidwho-1394470

ABSTRACT

BACKGROUND: Despite numerous advances in the identification of risk factors for the development of severe coronavirus disease 2019 (COVID-19), factors that promote recovery from COVID-19 remain unknown. Natural killer (NK) cells provide innate immune defense against viral infections and are known to be activated during moderate and severe COVID-19. Killer immunoglobulin-like receptors (KIR) mediate NK cell cytotoxicity through recognition of an altered MHC-I expression on infected target cells. However, the influence of KIR genotype on outcome of patients with COVID-19 has not been investigated so far. We retrospectively analyzed the outcome associations of NK cell count and KIR genotype of patients with COVID-19 related severe ARDS treated on our tertiary intensive care unit (ICU) between February and June 2020 and validated our findings in an independent validation cohort of patients with moderate COVID-19 admitted to our tertiary medical center. RESULTS: Median age of all patients in the discovery cohort (n = 16) was 61 years (range 50-71 years). All patients received invasive mechanical ventilation; 11 patients (68%) required extracorporeal membrane oxygenation (ECMO). Patients who recovered from COVID-19 had significantly higher median NK cell counts during the whole observational period compared to patients who died (121 cells/µL, range 16-602 cells/µL vs 81 cells/µL, range 6-227 cells/µL, p-value = 0.01). KIR2DS5 positivity was significantly associated with shorter time to recovery (21.6 ± 2.8 days vs. 44.6 ± 2.2 days, p-value = 0.01). KIR2DS5 positivity was significantly associated with freedom from transfer to ICU (0% vs 9%, p-value = 0.04) in the validation cohort which consisted of 65 patients with moderate COVID-19. CONCLUSION: NK cells and KIR genotype might have an impact on recovery from COVID-19.

5.
Eur J Immunol ; 51(6): 1449-1460, 2021 06.
Article in English | MEDLINE | ID: covidwho-1159935

ABSTRACT

The pathogenesis of autoimmune complications triggered by SARS-CoV2 has not been completely elucidated. Here, we performed an analysis of the cellular immune status, cell ratios, and monocyte populations of patients with COVID-19 treated in the intensive care unit (ICU) (cohort 1, N = 23) and normal care unit (NCU) (cohort 2, n = 10) compared with control groups: patients treated in ICU for noninfectious reasons (cohort 3, n = 30) and patients treated in NCU for infections other than COVID-19 (cohort 4, n = 21). Patients in cohort 1 presented significant differences in comparison with the other cohorts, including reduced frequencies of lymphocytes, reduced CD8+T-cell count, reduced percentage of activated and intermediate monocytes and an increased B/T8 cell ratio. Over time, patients in cohort 1 who died presented with lower counts of B, T, CD4+ T, CD8+ T-lymphocytes, NK cells, and activated monocytes. The B/T8 ratio was significantly lower in the group of survivors. In cohort 1, significantly higher levels of IgG1 and IgG3 were found, whereas cohort 3 presented higher levels of IgG3 compared to controls. Among many immune changes, an elevated B/T8-cell ratio and a reduced rate of activated monocytes were mainly observed in patients with severe COVID-19. Both parameters were associated with death in cohort 1.


Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Monocytes/immunology , SARS-CoV-2/immunology , Aged , Antibodies, Viral/immunology , B-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Female , Humans , Immunoglobulin G/immunology , Lymphocyte Count , Male , Middle Aged , Monocytes/pathology , Prospective Studies , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL